

Coromandel International Ltd Visakhapatnam Plant

Mayankar Singh – DGM – Power Electrical Instrumentation R N V Chandra Sekhar– Sr Manager – Operations R Bhanu Prasad – Dy Manager – Technical Services

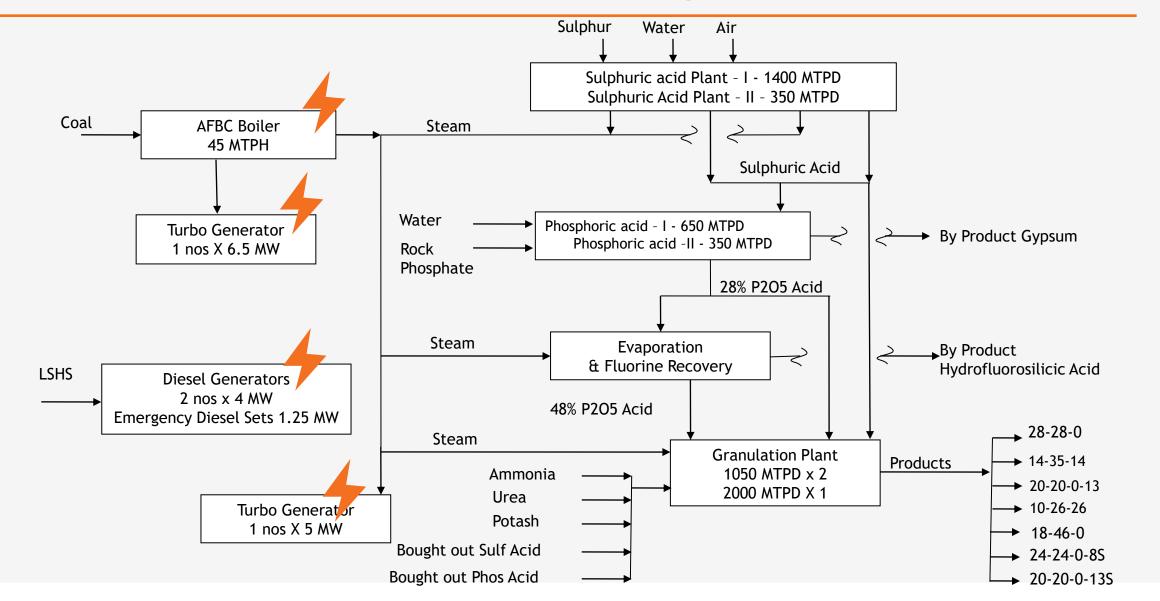
- ➤ Fertiliser Products 1.1 MMTPA
- Captive Raw Material Generation 0.4 Phosphoric Acid & 0.6 MMTPA Sulfuric Acid
- ➤ 0.025 MMTPA Specialty Nutrients Plants
- > 5MW Captive Turbo Generator from Waste Steam
- > 7.8% Power share of APGPCL gas based power plant
- Connected Power Load 19 MVA
- 22 LIGPD Water from Tatipudi & Meghadrigedda Reservoirs
- DSIR approved R & D facility

Company Profile

Process	Phosphatic Fertiliser with captive Sulphuric acid & Phosphoric acid plants				
Ownership	Public - Private				
Year of Establishment	1967				
Turnover of the Unit	45135	(FY 2021-22) (INR Million)			
Thermal Cost as % of Manufacturing Cost	0.80	%			
Electrical Cost as % of Manufacturing Cost	1.44	%			
Total Energy Cost as % of Manufacturing Cost	2.24	%			
Thermal Energy Cost	48924	(INR / million kcal)			
Electrical Energy Cost	5.46	(INR / kWh)			

Process Plants – Technology & Specification

Sulphuric Acid Plant I	Sulphuric Acid Plant II	Phosphoric Acid Plant I	Phosphoric Acid Plant II
1400 MTPD	400 MTPD	700 MTPD	700 MTPD
Monsanto Enviro Chem	Monsanto Enviro Chem	Dorr Oliver	Prayon Technologies

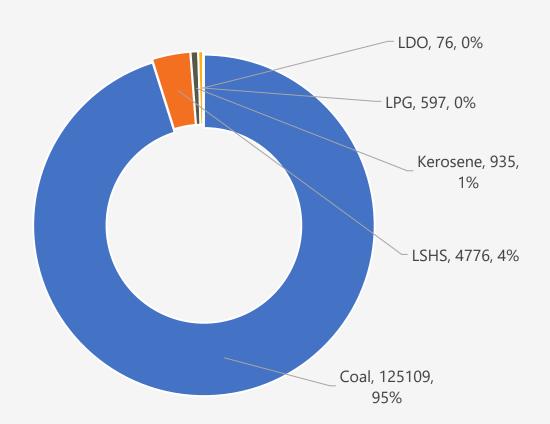


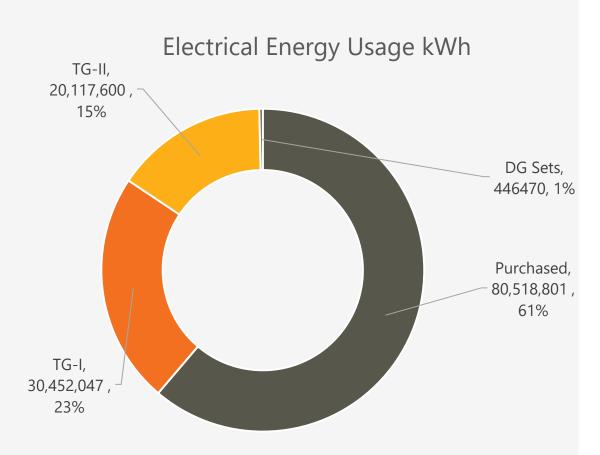
Train A & B	Train C	Turbo Generator	Boiler	Turbo Generator II
2100 MTPD	2000 MTPD	5 MW	45 MTPH	6.5 MW
Wellman Lord - TVA	Incro	Condensing	Atm Fluidised Bed	Non Condensing

Process Flow Diagram

Production & Energy Consumption

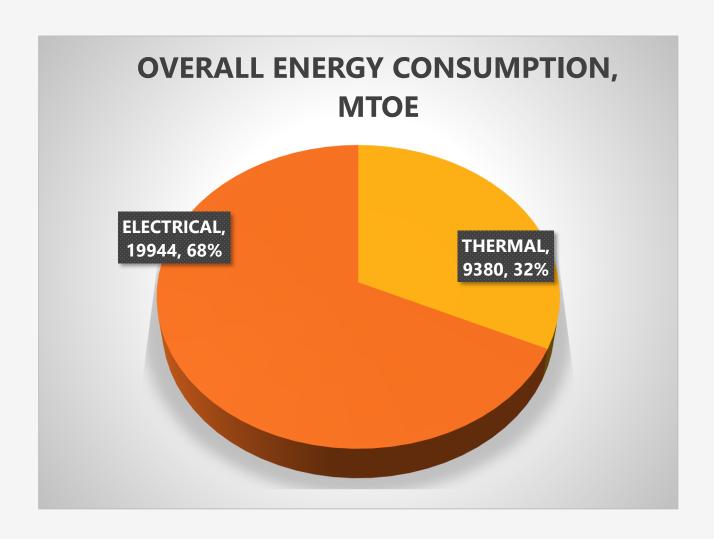
Parameters	Unit of Measurements	2019-2020	2020-2021	2021-2022
Production				
Complex Fertiliser	MT	1079187	981237	1070858
Phosphoric Acid	MT	243488	251996	338697
Sulphuric Acid	MT	581081	466576	532779
Energy				
Annual Electrical Energy Consumption	million kWh	112.32	94.05	108.75
Annual Cost of Electricity Consumed	million INR	471.31	415.83	422.53
Annual Thermal Energy Consumption	million kcal	30,833	21,449	93,800
Annual Cost of Thermal Energy Consumed	million INR	54.55	38.06	242.36
Specific Electrical Energy Consumption	kWh/Ton of production	104.08	95.85	101.55
Specific Thermal Energy Consumption	Kcal/Ton of production	28570	21859	87593
Total Energy Consumption	MTOE	23949	21415	29324


Reason for increase in Specific Energy: Installation of New captive raw material Phosphoric Acid Plant – II in 2019-20 and increase in its capacity utilisation by 39% resulted in an increase of SEC of products by 22%



Energy Consumption 2021-22

Thermal Energy Consumption Mkcal



Energy Consumption 2021-22

Benchmarking

	Electrical	Thermal	Total
Unit of measurement	kWh/MT	Kcal / MT	MTOE/MT
Coromandel Specific Energy	101.55	87593	0.0274
Global Benchmark	102	870740	0.1161
Location of Unit	Europe	Europe	Europe
Difference with Global Benchmark	0.45	783147	0.0887
Internal Target Specific Energy	101	85000	0.027

Comments

Derived benchmark being sum total energy of Sulphuric acid, Phosphoric acid & NPK complex plant

Source of Information

- Page 58 Table A2, Best Available Techniques for Production of Sulphuric Acid, Booklet No 3 of 8, Year 2000
- EU IPPC Reference Document on Best Available Techniques in Large Volume Inorganic Chemicals – Ammonia, Acids and Fertilizers Industries. December 2006
- Roger Heath, John Mulckhuyse and Subrahmanyan Venkataraman, Page 16, The Potential for Energy Efficiency in the Fertilizer Industry. World Bank Technical paper No 35, 1985


Benchmarking

Action Plans to Achieve Benchmark

- > Annual Specific energy consumption targets
- Annual Energy efficiency improvement projects with specific targets and allocated budget
- ➤ Maximise Rail transport. Deployment of 35 MT replacing 10 20 MT trucks for product despatch
- ➤ Institutionalization of energy efficiency & conservation awareness programs.
- ➤ Institutionalization of internal incentive system to promote & reward energy efficiency behaviors
- Support technical training

2022-23	2024-25
0.0273	0.027
MTOE/MT	MTOE/MT

Activities:

- ✓ Installation of capacitor banks at motor control centers
- ✓ SCADA & IIOT for real time monitoring
- ✓ Installation of LED lights for general illumination
- ✓ Installation of Variable Frequency drives
- ✓ Installation of Roof top solar plant
- ✓ Modernisation of age-old electrical drives & switchgear
- ✓ Maximise day light savings using translucent roof sheets and optimization of auto light sensors
- ✓ Optimisation of process plant loads
- ✓ Maximise Planned shutdown
- ✓ Maximise utilisation of waste heat
- ✓ Avoid Diesel Power & Coal Fired Boiler Generation,
- ✓ Maximize internal storage & avoid multiple material handling
- ✓ Deploy best available technologies in manufacturing

Planned ENCON 2021-22

		Electrical	Annual Thermal Saving	Investment
		(Million	(Million	
		kWh)	Kcal)	Rs Million
1	Installation of 11KV Automatic Power Factor controlling system	1.08		29.5
2	Upgradation of Wharf Boiler Burner Management system with servo controllers	0	34.5	2.0
3	Replacement of age old window AC units with 3 star rating units	0.07		2
4	Power Plant Scada upgradation	0.1		3
5	Replacement of age old rewound motors by IE3 motors	0.2		6

ENCON 2019-22

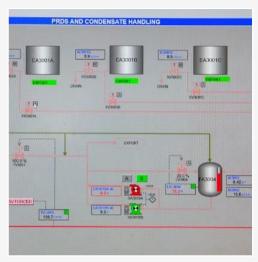
Year	No of Proposals	Investment	Electrical Savings	Thermal Savings	Savings Rs Million	Impact on Sp Consur	
		Rs Million	Million kWh	Million kcals		Electrical kWh / MT	Thermal mkcal / MT
2019-20	7	579	22.38		122	20.7	
2020-21	6	98	0	1749	14	0.0	0.002
2021-22	4	10	0.426	439	7	0.4	0.000

Innovative Projects 2020-21

Trucks loading with Excavators

Direct Loading of trucks through feed chutes

- 1 Installation of Direct Loading Chutes for Gypsum Trucks Loading
- 2 Avoided Utilisation of Excavators
- Replication Successful operation of Project, Hence finds wide replicability
- 4 Impact Lower cost of Trucks loading


Innovative Projects 2020-21 - Automation

- Installation of Individual Heat Exchanger Steam Condensate conductivity meters with auto drain system
- 2 Automation Real time process control
- Replication Successful operation of Project, Hence finds wide replicability
- 4 Impact Higher Steam condensate recovery

Control valves for condensate export and drain lines

Steam condensate – DCS control

Innovative Projects 2021-22

- Deployment of 35 MT capacity trucks, for product despatch based on availability
- Advantages Lower truck turnaround time and lower transport fuel oil consumption
- Replication Maximise deployment of 35 MT when & wherever available
- 4 Impact Lower transport fuel oil consumption

Utilisation of renewable energy sources

Replacement of Electrical Energy with Renewable Energy	Installed Capacity (MW)	Generat		%	Annual Energy Generated in 2020-21	Annual Energy Generated % Share in 2021-22	% Share
		(Million			(Million	(Million	
		kWh)			kWh)	kWh)	
Solar (PV) - Offsite Gen.) ().945	0.81			
Others – Offsite Gen.) 1	.512	1.29			

Due to Covid-19, unable to procure renewable energy certificates, backlog purchase planned during the year 2022-23

Waste Utilisation

	2019-2020	2020-2021	2021-2022
Generation, MT			
Waste Steam from Sulphuric acid Plant, MT	696965	540954	608961
Heat Value (GCV 634 kcals/kg) mkcal	441876	342965	386081
Disposal, MT			
Utilised for Process Heating	488095	398983	422619
Balance for Power Generation	208870	141970	180699

GHG Inventorisation

Absolute Emissions	2019-20	2020-21	2021-22		
Thermal (Scope 1 - Direct)	6976	2037	28621	Ton	CO2
Power (Scope 2 - bought out power)	62452	65838	66025	Ton	CO2
Scope III - Employee commuting	3177	3177	3524	Ton	CO2
Total	72604	71052	98170	Ton	CO2

Emission Intensity	2019-20	2020-21	2021-22	
Production	1079187	981237	1070858	MT
Carbon Intensity	67.3	72.4	91.7	kg CO2 / MT

Disclosure of Emission data Publicly – Yes Full disclosure

GHG Inventorisation

	Emission kg CO2/MT
Target Short Term	90
Target Long Term	63

Action Plan

- 1 Replace age old motors with IE3 motors
- Maximise turbo power generation from waste Steam
- 3 Install energy efficient lighting using LED bulb
- Install Rooftop solar power plant of 95 kWp capacity
- Modernisation of age-old low-tension switchgear
- Power factor improvement by installing capacitor banks
- Minimising Thermal energy consumption
- 8 Replacement of defective insulation
- 9 Improve condensate recovery

Green Supply Chain Management

Green purchase policy (if, any): Yes

- 1 In all purchases, preference to local suppliers
- All packaging materials used to be made of recyclable materials
- 3 Transport charges determined considering fuel efficiency
- 4 Deployment of 35 MT Trucks replacing 10 20 MT
- Registered under Plastic Waste Management Rules 2016. 5462 MT of plastic waste was recycled during 2021-22

Captive Raw Material Generation & supply to other units of Coromandel

Investment Made			
Projects Implemented	(Rs In Million)	Description	
Captive Generated Raw		Captive Generated Raw material phosphoric acid plant capacity	
Material Phosphoric	65	augmented, resulting in self-sufficiency. Excess raw material	
acid supply to sister	03	produced is supplied to sister concerns through truck transport,	
concerns		limiting import & saving in transport fuel costs	

Monitoring

Daily Monitoring — Daily Target Vs Actual Specific Energy Consumption compared & corrective actions undertaken

Review Meeting Chaired By - Unit Head

Typical Report

Apr - I	May 21	ay 21 with pap-2												
145102			Apr'	22 to	May-22		Prodn	192500		209712		17212	Rs./MT	Rs./MT
Norm	Rs./MT			Norm		Rate		Rs/MT			Diff	Usage	Price	
Actual	Actual	Head		Budget	Actual	Budget	Actual	Budget	Budget - exicludes p205 transfers	Actual	Actuals - exicludes p205 transfers	Rs/MT	Varianc	Variance
127	595	Power	Kwh	124	115	2.8	4.9	351	291	560	486	(209)	26	(234)
3	203	Water	M3	3.3	3.1	63	65	206	157	204	168	1	9	(7)
1	20	Fuel (Ishs)	Kgs	0.4	0.4	46	60	21	21	23	23	(3)	2	(5)
0	29	Fuel - Others						9	9	12	12	(3)	(2)	(2)
27	138	Coal	Kgs	70.4	48.9	7.3	10.0	517	326	490	351	27	158	(132)
0	0	Chemicals & Mos.												
1	54	Defoamer	Kgs	1.9	1.8	48.5	70.2	90	65	124	92	(34)	4	(38)
0	0	Granulation Aid	Kgs	0.0	0.0	0.0	0.0	0	0	0	0	0	0	0
0	17	Anti Caking Agent	Kgs	0.5	0.1	38.0	38.0	18	18	2	2	16	16	0
1	38	Caustic Lye	Kgs	1.0	1.0	40.0	61.9	41	41	64	64	(23)	(0)	(23)
0	0	Catalyst	Kgs	0.0	0.0	0.0	0.0	0	0	0	0	0	0	0
0.38	3	Hydrated Lime		2.1	0.7	8.0	9.1	17	11	6	4	11	11	(1)
0	0	Lime Stone		1.7	0.0	6.0	0.0	10	10	0	0	10	10	0
	19	Other Chemicals						23	16	13	11	10	5	5
	1115	Total						1303	965	1499	1215	(196)	240	(437)

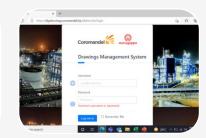
Monitoring by IOT measures implemented

a. Automation projects

- 1) Document Digitisation
- 2) Soft Sensor Project for % P2O5 prediction
- 3) Online moisture analyser Gypsum
- 4) Online Level Sensors for reservoirs
- 5) Process Automation Bag counters in Old Bagging, Pipe reactor skin temperature, Compressed air flowmeters installation completed
- 6) Reliability Monitoring: Installation of Vibration sensors in identified critical equipment

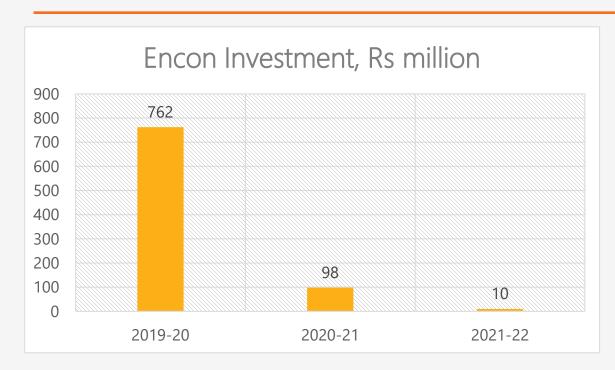
Moisture Analyser AB Trains

Moisture Analyser Gypsum


Moisture Analyser Trains A & B

Skin temperature sensors Train A

Skin temperature sensors Train C



Engineering document digital portal inaugurated

Encon budget & Training

All proposals are evaluated for performance and economic viability and then implemented.

Proposals with quick payback are prioritised.

There is no limit of funds for taking up energy conservation activities

Training

- Plant personnel regularly participate in CII Webinars, Encon training programs conducted by CII and Other Institutions & Internal training programs
- Walkathon conducted on the beach on world environment day, world earth day, world water day etc. to raise public awareness on conservation of resources
- Plant Underwent CII Energy Audit of Visak Unit in 2014
- Baseline verification audit was carried on 8th August 2016 as per guidelines issued by Bureau of Energy Efficiency, Ministry of Power, Govt of India.

Encon Kaizens & Team work

Modernisation of Air conditioners with Energy Efficient 3 Star units

LSHS Tank Fuel Oil Temperature Control Valve

Projects taken up by workers & supervisors

Implementation of ISO 50001 / Green Co / IGBC rating

Ours integrated management system encompasses standards of Quality - ISO 9001:2015, Environment - ISO 14001 : 2015 & Occupational Health & Safety - ISO 45001:2018.

The level of integration with energy management is

- ➤ ISO14001:
 - Cost savings through improved efficiency and productivity.
 - > Minimize waste and improve energy efficiency in order to reduce operating costs.
 - ➤ Continual improvement based on Plan Do –Check-Act

We are not a designated consumer as our energy consumption is less than 30000 MTOE for fertiliser sector.

Hence we have not opted for ISO50001 additional certification

	2019-20	2020-21	2021-22	
Investment in Encon	579	98	10	Rs million
Turnover	33863	30312	45135	Rs million
% Investment for Encon on Turnover	1.71%	0.32%	0.02%	%

- 1 Competitive Spirit among participating companies
- 2 Advice by Judges on implementing energy efficient technologies
- 3 Knowledge on Energy efficient technologies under implementation among Industries
- 4 Sense of recognition for energy conservation efforts undertaken

Energy Management Awards

Accolades

Award	Awarded By	Year			
SAFETY & ENVIRONMENT					
"One of the Top 10 Greenest Companies in India"	TERI & Business Today	2001			
Safety, Health & Environment Performance Award	CII - SR	2003, 2004			
Environment Protection Award	FAI	1996, 2009, 2017			
5 Star Rating	British Safety Council	1999, 2011			
Safety Award	National Safety Council	1998			
WATER & ENERGY CONSERVATION					
Excellence in Energy Conservation & Management	CII	2000,2001,2002,2014,2015,2016,2017,2018, 2019, 2020			
Certificate of Merit Energy Conservation	BEE	2002-03, 2003-04, 2005-06 & 2006-07, 2011-12			
Excellence in Energy Conservation	NREDCAP -Govt of AP	2009-10,2011-12,2012-13			
Excellence in Energy Conservation	AP Productivity council	2006-07			
Excellence in Water Management	CII	2009-10, 2010-11, 2011-12			
PRODUCTION					
Best overall performance of Fertiliser Plant	FAI	1994-95			
Best Operating Phosphoric Acid Plant	FAI	1994-95,1995-96,1996-97,97-98,2000-01,2001-02, 2003-04,2004-05,2005-06,2006-07,2009-10, 2011- 12,2013-14,2014-15,2015-16,2016-17, 2017-18			
INDUSTRIAL RELATIONS					
Best Management Award	Labour Dept – AP Govt	2000, 2005, 2013, 2015,2016,2017			

Energy Management

For further information please contact

gnanasundaram@coromandel.murugappa.com

Vice president - Manufacturing

Thank you